From Dupin Cyclides to Scaled Cyclides

نویسندگان

  • Lionel Garnier
  • Sebti Foufou
  • Marc Neveu
چکیده

Dupin cyclides are algebraic surfaces introduced for the first time in 1822 by the French mathematician Pierre-Charles Dupin. They have a low algebraic degree and have been proposed as a solution to a variety of geometric modeling problems. The circular curvature line’s property facilitates the construction of the cyclide (or the portion of a cyclide) that blends two circular quadric primitives. In this context of blending, the only drawback of cyclides is that they are not suitable for the blending of elliptic quadric primitives. This problem requires the use of non circular curvature blending surfaces. In this paper, we present another formulation of cyclides: Scaled cyclides. A scaled cyclide is the image of a Dupin cyclide under an affine scaling application. These surfaces are well suited for the blending of elliptic quadrics primitives since they have elliptical lines of curvature. We also show how one can convert a scaled cyclide into a set of rational quadric Bézier patches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation of Dupin cyclides using quaternions

Dupin cyclides are surfaces characterized by the property that all their curvature lines are circles or lines. Spheres, circular cylinders, cones and tori are particular examples. We introduce a bilinear rational Bézier-like formula with quaternion weights for parametrizing principal patches of Dupin cyclides. The proposed construction is not affine invariant but it is Möbius invariant, has low...

متن کامل

Blending of Surfaces of Revolution and Planes by Dupin cyclides

This paper focuses on the blending of a plane with surfaces of revolution relying on Dupin cyclides, which are algebraic surfaces of degree 4 discovered by the French mathematician Pierre-Charles Dupin early in the 19th century. A general algorithm is presented for the construction of two kinds of blends: pillar and recipient. This algorithm uses Rational Quadric Bézier Curves (RQBCs) to model ...

متن کامل

Construction of 3D Triangles on Dupin Cyclides

This paper considers the conversion of the parametric Bézier surfaces, classically used in CAD-CAM, into patched of a class of non-spherical degree 4 algebraic surfaces called Dupin cyclides, and the definition of 3D triangle with circular edges on Dupin cyclides. Dupin cyclides was discovered by the French mathematician Pierre-Charles Dupin at the beginning of the 19th century. A Dupin cyclide...

متن کامل

Gluing Dupin cyclides along circles, finding a cyclide given three contact conditions

Dupin cyclides form a 9-dimensional set of surfaces which are, from the viewpoint of differential geometry, the simplest after planes and spheres. We prove here that, given three oriented contact conditions, there is in general no Dupin cyclide satisfying them, but if the contact conditions belongs to a codimension one subset, then there is a one-parameter family of solutions, which are all tan...

متن کامل

Do Blending and O setting Commute for Dupin Cyclides?

A common method for constructing blending Dupin cyclides for two cones having a common inscribed sphere of radius r > 0 involves three steps: (1) computing the (?r)-oosets of the cones so that they share a common vertex, (2) constructing a blending cyclide for the ooset cones, and (3) computing the r-ooset of the cyclide. Unfortunately , this process does not always work properly. Worse, for so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003